(6z-9z^2)/(3z)+2(3-4z)=19

Simple and best practice solution for (6z-9z^2)/(3z)+2(3-4z)=19 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (6z-9z^2)/(3z)+2(3-4z)=19 equation:



(6z-9z^2)/(3z)+2(3-4z)=19
We move all terms to the left:
(6z-9z^2)/(3z)+2(3-4z)-(19)=0
Domain of the equation: 3z!=0
z!=0/3
z!=0
z∈R
We add all the numbers together, and all the variables
(6z-9z^2)/3z+2(-4z+3)-19=0
We multiply parentheses
(6z-9z^2)/3z-8z+6-19=0
We multiply all the terms by the denominator
(6z-9z^2)-8z*3z+6*3z-19*3z=0
Wy multiply elements
(6z-9z^2)-24z^2+18z-57z=0
We get rid of parentheses
-9z^2-24z^2+6z+18z-57z=0
We add all the numbers together, and all the variables
-33z^2-33z=0
a = -33; b = -33; c = 0;
Δ = b2-4ac
Δ = -332-4·(-33)·0
Δ = 1089
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1089}=33$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-33)-33}{2*-33}=\frac{0}{-66} =0 $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-33)+33}{2*-33}=\frac{66}{-66} =-1 $

See similar equations:

| r+0.7=2.12 | | Y2-4y=21=0 | | Y.4y+5=y+14 | | 15=-3(-2x+7) | | 15x+3=7x+1 | | -6=-4=v/2 | | 9x-4×3x+3=0 | | 4(3x+7)=-23+39 | | 4j−–3=19 | | n5− 4=1 | | 3/10x+2=5 | | 5x-7=-9+3x | | 36=5v+6 | | 3(5-4x)=11x-192 | | 3(3b-3)=-45 | | 4(t+1)=8+4t | | -6=-2(2-p) | | -7+2y=-7 | | y–4+ –15=–14 | | 15(x-5)-3(x-9)+5(x+6)=0 | | y/4+–15=–14 | | 34x=312 | | 4=3r−2= | | 1-3(-4x-2)=-41 | | -2+x/5=-37 | | .30x+x=168000 | | 6-0.2x=6.8 | | 41=-1/2(6x-8)+3 | | -48=4(-4x+4) | | −5−3(6x−8)=−5x+19 | | x^2–6x+11=0 | | (d)/(1.6)+31=40 |

Equations solver categories